Recapitulation of Clinical Individual Susceptibility to Drug-Induced QT Prolongation in Healthy Subjects Using iPSC-Derived Cardiomyocytes

نویسندگان

  • Tadahiro Shinozawa
  • Koki Nakamura
  • Masanobu Shoji
  • Maya Morita
  • Maya Kimura
  • Hatsue Furukawa
  • Hiroki Ueda
  • Masanari Shiramoto
  • Kyoko Matsuguma
  • Yoshikazu Kaji
  • Ippei Ikushima
  • Makoto Yono
  • Shyh-Yuh Liou
  • Hirofumi Nagai
  • Atsushi Nakanishi
  • Keiji Yamamoto
  • Seigo Izumo
چکیده

To predict drug-induced serious adverse events (SAE) in clinical trials, a model using a panel of cells derived from human induced pluripotent stem cells (hiPSCs) of individuals with different susceptibilities could facilitate major advancements in translational research in terms of safety and pharmaco-economics. However, it is unclear whether hiPSC-derived cells can recapitulate interindividual differences in drug-induced SAE susceptibility in populations not having genetic disorders such as healthy subjects. Here, we evaluated individual differences in SAE susceptibility based on an in vitro model using hiPSC-derived cardiomyocytes (hiPSC-CMs) as a pilot study. hiPSCs were generated from blood samples of ten healthy volunteers with different susceptibilities to moxifloxacin (Mox)-induced QT prolongation. Different Mox-induced field potential duration (FPD) prolongation values were observed in the hiPSC-CMs from each individual. Interestingly, the QT interval was significantly positively correlated with FPD at clinically relevant concentrations (r > 0.66) in multiple analyses including concentration-QT analysis. Genomic analysis showed no interindividual significant differences in known target-binding sites for Mox and other drugs such as the hERG channel subunit, and baseline QT ranges were normal. The results suggest that hiPSC-CMs from healthy subjects recapitulate susceptibility to Mox-induced QT prolongation and provide proof of concept for in vitro preclinical trials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Translational Assessment of Human-Induced Pluripotent Stem Cell Derived Cardiomyocytes for Evaluating Drug-Induced Arrhythmias.

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) hold promise for assessment of drug-induced arrhythmias and are being considered for use under the comprehensive in vitro proarrhythmia assay (CiPA). We studied the effects of 26 drugs and 3 drug combinations on 2 commercially available iPSC-CM types using high-throughput voltage-sensitive dye and microelectrode-array assays being s...

متن کامل

Modeling susceptibility to drug-induced long QT with a panel of subject-specific induced pluripotent stem cells

A large number of drugs can induce prolongation of cardiac repolarization and life-threatening cardiac arrhythmias. The prediction of this side effect is however challenging as it usually develops in some genetically predisposed individuals with normal cardiac repolarization at baseline. Here, we describe a platform based on a genetically diverse panel of induced pluripotent stem cells (iPSCs) ...

متن کامل

Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture

Long QT syndrome (LQTS) is caused by functional alterations in cardiac ion channels and is associated with prolonged cardiac repolarization time and increased risk of ventricular arrhythmias. Inherited type 2 LQTS (LQT2) and drug-induced LQTS both result from altered function of the hERG channel. We investigated whether the electrophysiological characteristics of LQT2 can be recapitulated in vi...

متن کامل

Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity.

BACKGROUND Cardiotoxicity is a leading cause for drug attrition during pharmaceutical development and has resulted in numerous preventable patient deaths. Incidents of adverse cardiac drug reactions are more common in patients with preexisting heart disease than the general population. Here we generated a library of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from pat...

متن کامل

Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing.

BACKGROUND Human induced pluripotent stem cells (iPSCs) play an important role in disease modeling and drug testing. However, the current methods are time-consuming and lack an isogenic control. OBJECTIVES This study sought to establish an efficient technology to generate human PSC-based disease models with isogenic control. METHODS The ion channel genes KCNQ1 and KCNH2 with dominant negati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017